CONVERGE CFD Software

Event

Training: EU

Advanced Topics in CONVERGE

October 6–7, 2016 3:30 AM – 12:00 PM CEST Linz, Austria - AT
Advanced Topics in CONVERGE
Convergent Science - Europe
Hauptstraße 10
Linz, Austria - AT
Advanced Topics and Client’s Case Setup
October 6th October 7th
Advanced Topics in ICE: Multi-cylinder, Multi-cycle, Knock analysis Client’s case setup
Ensight Presentation
CONVERGE GT SUITE Coupling
User Defined Functions
Volume of Fluid Modeling Client’s case setup
Fluid-Structure Interaction Modeling
Genetic Algorithm Optimization
Install and Run CONVERGE

Advanced Topics in Internal Combustion Engine Modeling

In this workshop we will discuss several of the unique features of CONVERGE that yield efficient and accurate simulations of internal combustion (IC) engines. With optimized cell counts via Adaptive Mesh Refinement and fast flow and detailed chemistry solvers, you can extend your simulation domain to include multiple cylinders to analyze cylinder-to-cylinder variation, run multiple cycles to understand cycle-to-cycle variation, and capture propagating pressure waves to resolve engine knock. We will discuss published cases and how to set up similar cases in CONVERGE.

CONVERGE – GT SUITE Coupling

CONVERGE and GT-SUITE can be coupled in a variety of ways. This workshop will discuss two coupling options. In conventional 1D-3D coupling, CONVERGE performs a 3D simulation while GT-SUITE performs a 1D simulation. The information at the interfaces is exchanged or mapped between the two programs. In hydromechanical coupling, you define a system with rigid bodies in GT-SUITE and subject the rigid bodies to fluid forces and constraints using CONVERGE. CONVERGE calculates the forces on the object and relays this information to GT-SUITE. GT-SUITE then solves the rigid body dynamics equations to update the object’s state and sends this information back to CONVERGE. Finally, CONVERGE moves the object.

User-Defined Functions

In this workshop we will explore the vast array of user-defined functions (UDFs) that can be used to adjust existing models, implement new models, direct CONVERGE to calculate additional quantities, or initialize or reinitialize physical variables. We will discuss the different types of UDFs that CONVERGE supports as well as the process of compiling the UDFs and the necessary header files.

Volume of Fluid Modeling

Volume of fluid (VOF) methods are some of the most popular numerical techniques for locating moving and deforming interfaces between fluids in multiphase flow simulations. In this workshop we will discuss numerical details, example cases, and some validation calculations for the various VOF options in CONVERGE. One VOF method in CONVERGE is based on the species mass fraction equation and is appropriate for miscible or compressible multiphase flow calculations. One option in CONVERGE v2.3, which is based on the mass fraction VOF, is VOF-spray one-way coupling. In this option CONVERGE collects detailed fluid flow information near the nozzle exit during a VOF simulation and then uses this information to inject parcels for Lagrangian spray calculations. Another VOF method, which solves for the void fraction directly, is available in CONVERGE as two separate schemes: Piecewise-Linear Interface Calculation (PLIC) and High-Resolution Interface-Capturing (HRIC). These schemes have been tested on a range of problems including a breaking dam, a rising droplet, and spray injection, and each test case illustrates the ability of the method to track interfaces sharply.

Advanced Fluid-Structure Interaction Modeling

Rigid body fluid-structure interaction (FSI) modeling describes how the presence of one or more immersed objects affect the flow field and how the forces from the surrounding fluid influence the dynamics of the object. In this workshop we will discuss the theory behind FSI, the numerics of the dynamics solver, and the coupling of the dynamics solver to the flow solver in CONVERGE. We will consider several examples (a pressure relief valve, a spool valve, and an injector armature) that highlight the current capabilities of FSI modeling in CONVERGE. Finally, we will discuss complex examples that invoke a user-defined function coupled with FSI to model deforming bodies such as reed valve petals or a spring-close ball valve.

Genetic Algorithm Optimization

This workshop will focus on model optimization in CONVERGE, including Genetic Algorithm (GA) optimization and Design of Experiments model interrogation. We will discuss different types of optimization and the details of the GA methodology, and we will use examples to illustrate how to set up the utility, select parameters, and run an optimization. Finally, we will discuss the best practices of optimization (e.g., model setup, parameter and range selection, and search space considerations) and advanced applications such as geometry modification.

Lunch will be provided and space is limited.

Training courses are free of charge and space is limited so register soon. PREREQUISITE: Introductory CONVERGE training or equivalent basic knowledge of CONVERGE. The advanced training courses are not recommended for new users.

Registration is closed.