Silver Sponsor

US-Seattle Conference

ASME IC Engine Fall Technical Conference

October 15–18, 2017 Seattle, WA - US
ASME IC Engine Fall Technical Conference
Doubletree by Hilton Seattle Airport
18740 International Boulevard
Seattle, WA - US
Contact us to arrange a meeting to learn how CONVERGE CFD can simulate engines with different geometry configurations, fuel types, and combustion models. You can accurately predict the performance and emissions from your engine designs with CONVERGE’s fully coupled detailed chemistry and autonomous meshing. But you don’t have to stop there. You can use CONVERGE’s optimization and model interrogation tool, CONGO, to optimize your designs.

Tuesday, October 17 | SCR Modeling, Experiments and Sensing

Zhaoyu Luo of Convergent Science

Environmental regulations have put stringent requirements on NOx emissions in the transportation industry, essentially requiring the use of exhaust after-treatment on diesel fueled light and heavy-duty vehicles. Urea-Water-Solution (UWS) based Selective Catalytic Reduction (SCR) for NOx is one the most widely adopted methods for achieving these NOx emissions requirements. Improved understanding and optimization of SCR after-treatment systems is therefore vital, and numerical investigations can be employed to facilitate this process. For this purpose, detailed and numerically accurate models are desired for in-cylinder combustion and exhaust after-treatment. The present paper reports on 3-D numerical modeling of the Urea-Water-Solution SCR system using Computational Fluid Dynamics (CFD). The entire process of Urea injection, evaporation, NH3 formation and NOx reduction is numerically investigated. The simulation makes use of a detailed kinetic surface chemistry mechanism to describe the catalytic reactions. A multi-component spray model is applied to account for the urea evaporation and decomposition process. The CFD approach also employs an automatic meshing technique using Adaptive Mesh Refinement (AMR) to refine the mesh in regions of high gradients. The detailed surface chemistry NOx reduction mechanism validated by Olsson et al. (2008) is applied in the SCR region. The simulations are run using both transient and steady-state CFD solvers. While transient simulations are necessary to reveal sufficient details to simulate catalytic oxidation during transient engine processes or under cyclic variations, the steady-state solver offers fast and accurate emission solutions. The simulation results are compared to available experimental data, and good agreement between experimental data and model results is observed.

Wednesday, October 18 | Workshop

9:00 AM–5:00 PM | Enabling Technologies for On-Road Heavy Duty Engines using CFD Simulations

The hands-on CFD workshop will focus on introducing early career engineers, graduate students and experimentalists to modeling combustion and flow in Heavy Duty Reciprocating Engines using advanced CFD simulation tools. Shawn Givler and Sameera Wijeyakulasuriya, two of Convergent Science’s most experienced Applications engineers, will introduce industry engineers, students, and experimentalists to some of CONVERGE CFD’s powerful tools for modeling heavy duty engines, including the following topics:

  • Preparing the piston and valves for motion
  • Activating spray, turbulence, wall heat transfer, and detailed chemistry models
  • Selecting appropriate volume mesh strategies
  • Using VOF-spray one-way coupling to incorporate upstream turbulence, cavitation, and aerodynamic effects from the fuel injector
  • Optimizing fuel injection parameters via genetic algorithms to reduce ISFC and NOx emissions
  • Predicting piston metal temperatures via conjugate heat transfer modeling
  • Coupling CONVERGE with GT-POWER to obtain realistic boundary conditions
  • Modeling PAH detailed chemistry to obtain accurate and detailed soot predictions
  • Setting up multiple pulsed injection simulations and dual fuel simulations

Conference information